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Abstract. With the aid of the Schwinger-boson mean-field method, we study the low-lying excitations and
thermodynamic properties of a ferrimagnetic Heisenberg two-leg ladder (i.e., a ferrimagnetic double-chain
with an antiferromagnetic interaction). The interaction between the two chains plays an important role
in producing a low-lying excitation energy gap, affecting the low-lying excited spectrum, and increasing
the disorder of the ferrimagnetic double-chain. The excitation spectrum, energy gap, and spin reduction in
the ground state are calculated. Thermodynamic quantities such as the short-range spin correlation and
short-range order are also obtained at low temperatures. In this gapful system, we observed the exponential
behaviors in both the specific heat (CV ) and the product of magnetic susceptibility and temperature (χT )
at low temperatures. The exponential behavior of the χT versus temperature agrees qualitatively with the
experimental results in NiCu(pba)(D2O)3 · D2O at low temperatures.

PACS. 75.10.Jm Quantized spin models – 75.40.Cx Static properties (order parameter, static
susceptibility, heat capacities, critical exponents, etc.) – 75.50.Ee Antiferromagnetics – 75.50.Gg
Ferrimagnetics

1 Introduction

The field of low-dimensional quantum-spin systems has
been a focus in condensed-matter physics for about two
decades since Haldane pointed out the difference between
the integer-spin Heisenberg-antiferromagnetic chains and
the half-integer spin chains. By mapping the Heisenberg
antiferromagnetic chain to a nonlinear sigma model,
Haldane conjectured that there is a finite gap between
the ground state and the low-lying excitation states for
the chains with integer spin, while there is no gap for
half-integer spin chains [1]. This conjecture had been veri-
fied by later analytic, numerical, and experimental studies.
Current interests have spread into wider classes of spin
ladders, stimulated by the experimental realization of a
variety of spin systems [2]. These spin ladders consist of
coupled one-dimensional chains, which can be classified as
a uniform-spin ladder and alternating-spin ladder. Theo-
retical studies [3–5] have suggested that there are two dif-
ferent universal classes for the uniform-spin ladders, i.e.,
the antiferromagnetic spin-1/2 ladders are gapful or gap-
less depending on whether n (the number of legs) is even
or odd. These predictions have been confirmed experimen-
tally on LaCuO2.5 [6], and SrCu2O3 [7].
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It is very interesting to predict a similar phenomenon
in the alternating-spin Heisenberg ladders by spin wave
mean-field theory (SWMFT) [8], in which the interaction
between two ferrimagnetic Heisenberg chains would also
send the double-chain into a new disordered phase. This
gapful phase was proved further by the nonlinear sigma
model [8] and the density matrix renormalization group
(DMRG) [9]. However, up to now, corresponding analytic
work is still relatively limited, especially in comparison
with the uncoupled ferrimagnetic chains. Experimentally,
the family of compounds of ACu(pba)(H2O)3 ·H2O (with
A = Mn, Fe, Co, Ni, and pba = 1,3-propylenebisoxamato)
belongs to the weakly coupled alternating spin chains fam-
ily [10], in which the interchain coupling plays an impor-
tant role at extremely low temperature. These have mo-
tivated us to study the low-temperature thermodynamic
properties in such a mixed-spin two-leg ladder system
composed of two ferrimagnetic Heisenberg chains with two
kinds of spins SA = 1/2 and SB = 1. This “ferrimag-
netic Heisenberg two-leg ladder” has isotropic couplings J1

along the chains and J2 between them. The Hamiltonian
of this model is represented by:

H = J1

∑ (
SA1

2i · SB1
2i+1 + SA2

2i · SB2
2i+1

)

+ J2

∑ (
SA1

2i · SA2
2i + SB1

2i+1 · SB2
2i+1

)
, (1)
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Fig. 1. The ferrimagnetic Heisenberg two-leg ladder model.
The open (filled) circles represent SA=1/2 (SB=1) spins. A1,
A2, B1, and B2 specify four spins in the unit cell. The system
contains N such unit cells.

with the corresponding configuration shown in Figure 1.
In this paper, we limit our discussions to the effect of
the interchain coupling J2 in this paper, accepting that
J1 = 1.

As we know, the SWMFT, in dealing with the low-
lying excitation spectrum, was successfully used in a one-
dimensional spin (1,1/2) ferrimagnetic Heisenberg chain
and gave results in good agreement with those from the
DMRG [11,12]. However, for this two-leg ladder system,
the SWMFT is successful only in obtaining the linear ex-
citation spectrum through predicting a new disordered
phase caused by the intrachain coupling as we have men-
tioned above, but fails to predict the spin gap [8]. It is
the interchain coupling that destroys the long-range order
in the ground state of the ferrimagnetic single-chain, and
drives the system into a spin liquid phase. Consequently,
the SWMFT’s assumption of the long-range order in the
ground state breaks down, and the SWMFT is not suitable
for the ferrimagnetic Heisenberg two-leg ladder. Unlike
the SWMFT, the Schwinger-boson approach (SBMFT) is
a powerful technique [13], which provides a useful start-
ing point to characterize the spin liquid and valence bond
states as the nonvanishing expectation value of the mean
field contributed from a bondvariable, representing the
short-range correlations without assuming any long-range
order. Obviously, the SBMFT is very effective due to the
existence of the short-range antiferromagnetic correlations
in the mixed spin system. It has been successfully applied
in a one-dimensional ferrimagnetic Heisenberg chain [14]
and a two-dimensional mixed-spin model on square lat-
tice [15]. Therefore, we may employ it in this middle case
(between one-dimension and two-dimension) of the “ferri-
magnetic Heisenberg two-leg ladder”.

In this paper, the SBMFT is employed to describe
the two-leg ladder ranging from the weak coupling regime
(J2 = 0) to the strong coupling regime (J2 = 1). The ex-
citation spectrum, energy gap, and spin reduction in the
ground state are investigated in detail, which are in good
agreement with those from the DMRG by Trumper and
Gazza in reference [9]. Furthermore, the thermodynamic
quantities of the energy gaps, short-range spin correla-
tions, and short-range orders are discussed at low temper-
atures. The low-temperature magnetic susceptibility and
specific heat are also calculated and compared with the
experimental results.

This paper is organized as follows. In Section 2, we
introduce briefly the Schwinger-boson techniques that we

use in this paper. In Section 3, we discuss the thermody-
namic properties in the ground state and at low tempera-
tures. A brief summary is given at the end.

2 Schwinger-boson mean field theory

The four spin operators SAn
1 and SBn

1 in equation (1)
can be represented by eight kinds of Schwinger bosons
(a(1)

l,↑ a
(1)
l,↓ a

(2)
l,↑ a

(2)
l,↓ ), and (b(1)

l,↑ b
(1)
l,↓ b

(2)
l,↑ b

(2)
l,↓ ) on their sublattices,

SAn

l,+ = a
(n)+
l,↑ a

(n)
l,↓ SAn

l,z = 1
2

(
a
(n)+
l,↑ a

(n)
l,↑ − a

(n)+
l,↓ a

(n)
l,↓

)
(2)

SBn

l,+ = b
(n)+
l,↑ b

(n)
l,↓ SBn

l,z = 1
2

(
b
(n)+
l,↑ b

(n)
l,↑ − b

(n)+
l,↓ b

(n)
l,↓

)
, (3)

where n = 1 and 2 represent the up chain and the down
chain, respectively. On each sublattice, it should be con-
strained by the conditions: a

(n)+
l,↑ a

(n)
l,↑ + a

(n)+
l,↓ a

(n)
l,↓ = 2SA

(for l = 2i) and b
(n)+
l,↑ b

(n)
l,↑ +b

(n)+
l,↓ b

(n)
l,↓ = 2SB (for l = 2i+1).

By imposing the constraints on each site, we can correctly
map the original spin system to a bosonic system. In-
troducing four Lagrange multipliers λAn and λBn for the
sublattices of An and Bn, respectively, we can obtain the
mean field Hamiltonian within the above constraints:

HMF = λA1

∑

i

[
a
(1)+
2i,↑ a

(1)
2i,↑ + a

(1)+
2i,↓ a

(1)
2i,↓ − 2SA1

]

+ λA2

∑

i

[
a
(2)+
2i,↑ a

(2)
2i,↑ + a

(2)+
2i,↓ a

(2)
2i,↓ − 2SA2

]

+ λB1

∑

i

[
b
(1)+
2i,↑ b

(1)
2i,↑ + b

(1)+
2i,↓ b

(1)
2i,↓ − 2SB1

]

+ λB2

∑

i

[
b
(2)+
2i,↑ b

(2)
2i,↑ + b

(2)+
2i,↓ b

(2)
2i,↓ − 2SB2

]

+ J1

∑

i,η

[
SA1SB1 − 2A+

2i,2i+ηA2i,2i+η + SA2SB2

−2B+
2i,2i+ηB2i,2i+η

]
+ J2

∑

i

[
SA1SA2 − C+

2iC2i

+SB1SB2 − D+
2i+1D2i+1

]
, (4)

where the four bond operators used in the above equation
are introduced as:

A2i,2i+η = 1
2

(
a
(1)
2i,↑b

(1)
2i+η,↓ − a

(1)
2i,↓b

(1)
2i+η,↑

)

B2i,2i+η = 1
2

(
a
(2)
2i,↑b

(2)
2i+η,↓ − a

(2)
2i,↓b

(2)
2i+η,↑

)

C2i = 1
2

(
a
(1)
2i,↑a

(2)
2i,↓ − a

(1)
2i,↓a

(2)
2i,↑

)

D2i+1 = 1
2

(
b
(1)
2i+1,↑b

(2)
2i+1,↓ − b

(1)
2i+1,↓b

(2)
2i+1,↑

)
.

(5)

Considering the symmetry between the up chain and the
down chain in the ladder, we take the thermal average
〈A2i,2i+1〉 = 〈B2i,2i+1〉 = AeiθA , 〈C2i〉 = CeiθC and
〈D2i+1〉 = DeiθD . Here A, C, and D are three real ampli-
tudes of short-range order (SRO) parameters, reflecting
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the strength of the short-range antiferromagnetic corre-
lations in the sublattices of (An − Bn), (A1 − A2), and
(B1 − B2), respectively, with their corresponding phase
factors θA, θC , and θD. It was the three non-zero SRO pa-
rameters that enabled us to use the SBMFT. These will
be explained in the following section. Since λA1 = λA2

and λB1 = λB2 for the same reason of symmetry, we can
rewrite them as λA and λB, respectively. Thus under the
Hartree-Fock approximation, we can reduce the above ef-
fective Hamiltonian to:

HMF = 4NJ1S
ASB +NJ2S

ASA + NJ2S
BSB + 8NJ1A

2

+ 2NJ2C
2 + 2NJ2D

2 − 4NλASA − 4NλBSB

+ λA

∑

k

[
a
(1)+
k,↑ a

(1)
k,↑ + a

(1)+
k,↓ a

(1)
k,↓ + a

(2)+
k,↑ a

(2)
k,↑ + a

(2)+
k,↓ a

(2)
k,↓

]

+ λB

∑

k

[
b
(1)+
k,↑ b

(1)
k,↑ + b

(1)+
k,↓ b

(1)
k,↓ + b

(2)+
k,↑ b

(2)
k,↑ + b

(2)+
k,↓ b

(2)
k,↓

]

− J1

∑

k

[
zγkAe−iθA

(
a
(1)
k,↑b

(1)
k,↓ − a

(1)
k,↓b

(1)
k,↑

)

+zγkAeiθA

(
a
(1)+
k,↑ b

(1)+
k,↓ − a

(1)+
k,↓ b

(1)+
k,↑

)]

− J1

∑

k

[
zγkAe−iθA

(
a
(2)
k,↑b

(2)
k,↓ − a

(2)
k,↓b

(2)
k,↑

)

+zγkAeiθA

(
a
(2)+
k,↑ b

(2)+
k,↓ − a

(2)+
k,↓ b

(2)+
k,↑

)]

− J2

∑

k

[
Ce−iθC

(
a
(1)
k,↑a

(2)
k,↓ − a

(1)
k,↓a

(2)
k,↑

)

+CeiθC

(
a
(1)+
k,↑ a

(2)+
k,↓ − a

(1)+
k,↓ a

(2)+
k,↑

)]

− J2

∑

k

[
De−iθD

(
b
(1)
k,↑b

(2)
k,↓ − b

(1)
k,↓b

(2)
k,↑

)

+DeiθD

(
b
(1)+
k,↑ b

(2)+
k,↓ − b

(1)+
k,↓ b

(2)+
k,↑

)]
(6)

where
∑
k

is the sum of k over the first Brillouin zone.

The structure factor γk is defined as: γk = 1
z

∑
η=±1

eiηk

with z the number of nearest neighbors, and η the nearest
neighbor site.

By diagonalizing the mean-field Hamiltonian via the
Bogliubov transformation we can have:

HMF = Econst

+
∑

k

[
E−(k)

(
α

(1)+
k,↑ α

(1)
k,↑ + β

(1)+
k,↓ β

(1)
k,↓ + 1

+β
(2)+
k,↑ β

(2)
k,↑ + α

(2)+
k,↓ α

(2)
k,↓ + 1

)]
+

∑

k

[
E+(k)

(
α

(1)+
k,↓ α

(1)
k,↓

+β
(1)+
k,↑ β

(1)
k,↑ + 1 + β

(2)+
k,↓ β

(2)
k,↓ + α

(2)+
k,↑ α

(2)
k,↑ + 1

)]

= Econst + 2
∑

k

[
E−(k)

(
2n−

k + 1
)

+E+(k)
(
2n+

k + 1
)]

, (7)

with

Econst = 4NJ1S
ASB + NJ2

(
SASA + SBSB

)

+ 8NJ1A
2 + 2NJ2

(
C2 + D2

)

− 2NλA

(
2SA + 1

) − 2NλB

(
2SB + 1

)
.

For each k, there are eight branches of spectra, four
of each have the same size of excitation energy.
They can be divided into two classes: one belongs to
the acoustic branch E−(k), the other to the optical
branch E+(k). From a statistical point of view, we have
〈α(1)+

k,↑ α
(1)
k,↑〉 = 〈β(1)+

k,↓ β
(1)
k,↓〉 = 〈β(2)+

k,↑ β
(2)
k,↑〉 = 〈α(2)+

k,↓ α
(2)
k,↓〉

and 〈α(1)+
k,↓ α

(1)
k,↓〉 = 〈β(1)+

k,↑ β
(1)
k,↑〉 = 〈β(2)+

k,↓ β
(2)
k,↓〉 =

〈α(2)+
k,↑ α

(2)
k,↑〉. Therefore, we can rewrite them as n−

k and
n+

k , respectively, which are the Bose-type quasi-particles
with energies of E−(k) and E+(k). The corresponding ex-
citation spectra are:

E−(k) =
√

E0−
√

E1
2 , E+(k) =

√
E0+

√
E1

2
, (8)

E0 = λ2
A + λ2

B − 2 (2J1A cos[k])2 − (J2C)2 − (J2D)2

E1 =
(
λ2

A − λ2
B − (J2C)2 + (J2D)2

)

− 4(2J1A cos[k])2
(
(λA − λB)2 − (J2C)2 − (J2D)2

−2J2
2CD cos[2θA − θC − θD]

)
. (9)

In the meantime, we define the two energy gaps as follows:

∆− = 2Min[E−(k)], ∆+ = 2Min[E+(k)] , (10)

where ∆− and ∆+ are the energy gaps of the acous-
tic spectrum E−(k) and the optical spectrum E+(k),
respectively.

By minimizing the free energy obtained from
equations (7–9) at finite temperatures, we end up with
a group of self-consistent equations for the eight parame-
ters of A, C, D, λA, λB , θA, θC and θD. To our delight,
the three self-consistent equations about θA, θC and θD

can be simplified by θA = θC = θD = 0, or π, which means
that 〈A2i,2i+1〉, 〈C2i〉 and 〈D2i+1〉 are real numbers. The
final simplified self-consistent equations are:

1 + 2SA =
2
π

∫ π
2

0

[
coth

(
E−(k)

2T

)
∂E−(k)

∂λA

+ coth
(

E+(k)
2T

)
∂E+(k)

∂λA

]
dk (11)

1 + 2SB =
2
π

∫ π
2

0

[
coth

(
E−(k)

2T

)
∂E−(k)

∂λB

+ coth
(

E+(k)
2T

)
∂E+(k)

∂λB

]
dk (12)

− 8J1A =
2
π

∫ π
2

0

[
coth

(
E−(k)

2T

)
∂E−(k)

∂A

+ coth
(

E+(k)
2T

)
∂E+(k)

∂A

]
dk (13)
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− 2J2C =
2
π

∫ π
2

0

[
coth

(
E−(k)

2T

)
∂E−(k)

∂C

+ coth
(

E+(k)
2T

)
∂E+(k)

∂C

]
dk (14)

− 2J2D =
2
π

∫ π
2

0

[
coth

(
E−(k)

2T

)
∂E−(k)

∂D

+ coth
(

E+(k)
2T

)
∂E+(k)

∂D

]
dk, (15)

where T is the reduced temperature (i.e., kB = 1), and
E±(k) are formulated in equations (8–9). Given the inter-
acting couplings J1 and J2, we can solve the above self-
consistent equations (11–15) to acquire the short-range
order parameters of A, C, and D, and determine the two
energy spectra E−(k) and E+(k) at finite temperature T .
In the ground state, the term of coth(Eξ(k)

2T ) can be re-
duced to 1 as long as a finite gap exists in the spectrum
of Eξ(k) (here ξ = + or –). The Bogliubov transforma-
tion can also be obtained after solving these self-consistent
equations, which relates the original quasi-particle opera-
tors (a(n)

k,σ and b
(n)
k,σ, σ =↑ or ↓) in equation (6) with the new

quasi-particle operators (α(n)
k,σ and β

(n)
k,σ) in equation (7),

and can be used to calculate the average value of the z-
direction sublattice spin and the corresponding nearest
neighbor correlations. The four spin reductions on the four
sublattice sites in the unit cell are defined as:

τAn = SA − (−1)n〈SAn
z 〉,τBn = SB − (−1)n〈SBn

z 〉
(for n = 1, 2). (16)

3 Numerical results and discussion

3.1 Properties in the ground state

We start first our discussion with the extreme case of a fer-
rimagnetic single chain at J2 = 0, which has been proved
to has a gapless acoustic spectrum and a gapful optical
spectrum [11,14]. In the case of J2 = 0, we can reduce
the above equations (8–9) by C = D = 0, which com-
pare with reference [14]. It should be taken into account
that the Bogliubov quasi-particle condensation in the n−

k
channel of equation (7) would take place at absolute zero
temperature, because the excitation energy E−(k) has its
minimal value E−(k) = 0 at k = 0. But no condensa-
tion happens in the n+

k channel because of a finite optical
gap. These have been described in detail in references [14]
and [15]. In the ground state of the ferrimagnetic single
chain, two z-direction sub-lattice spins are obtained as:
〈SA

2i,z〉 = −0.291 and 〈SB
2i+1,z〉 = 0.791, and the ferrimag-

netic long-range order persists [14]. The spin reduction on
the A site τA = SA + 〈SA

z 〉 is equal to that on the B site
τB = SB − 〈SB

z 〉 = 0.209. It is very interesting to discuss
the effects of the interchain interaction J2 on these special
characteristics in a ferrimagnetic double-chain.

Fig. 2. The excitation spectra of E−(k) (filled points) and
E+(k) (open points) as a function of k at J1=1. The square
curve, triangle curve, and circle curve correspond to the cases
of J2=0, 0.6, and 1, respectively. Shown in the inset is the
enlargement around the center of the first Brillouin zone, dis-
playing the linear k relation with a finite energy gap.

When J2 = 0, our results agree with reference [14]
as we remarked above, and the lower energy spectrum in
the low-k regime would have a square formula as E−(k →
0) ∼ υsk

2. However, any antiferromagnetic interaction be-
tween the two ferrimagnetic chains would drive the system
into the gapful phase, which has an approximate acous-

tic spectrum of the form E−(|k| < 1) ∼
√

(∆−
2 )2 + υ2k2

from the above equations (8–10). But this spectrum ap-
proaches the nearly linear relation υ|k| for the k in the
center of Brillouin zone owing to the small gap, as shown
in Figure 2. Figure 2 shows the excitation spectra at three
different cases of J2 for fixed J1 = 1. At J2 = 0, the system
is returned to the isolated ferrimagnetic chains, the gap-
less acoustic dispersion simply follows the k2 dependence,
which is denoted by the filled square curve. However, the
acoustic spectra displays an approximately linear k rela-
tion in the center of the first Brillouin zone for |k| < 1
with a very small gap at J2 = 0.6 and J2 = 1, which are
marked by the filled triangle curve and filled circle curve,
respectively. The linear acoustic spectrum is an impor-
tant feature of the disordered ground state in many an-
tiferromagnetic systems, which was pointed out by Fukui
and Kawakami in reference [8]. In addition, the increase
of the coupling constant J2 enhances the bandwidth of
the acoustic spectrum, but contracts the bandwidth of
the optical spectrum. This phenomenon has also been ob-
served in two-dimensional (SA = 1, SB = 1/2) mixed-spin
systems [15], which is a signal that the one-dimensional
two-leg ladder is a crossover between the one- and two-
dimensional cases.

It was the interchain interaction that drives the system
into a gapful phase. This interaction should have a signif-
icant effect on the both gaps of the acoustic and optical
spectrum. Figure 3 shows the two gaps of ∆− (acoustic
spectrum gap) and ∆+ (optical spectrum gap) as a func-
tion of J2 in the regime of 0 < J2 < 1, respectively. Both
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Fig. 3. The energy gaps of (a) ∆− and (b) ∆+ as a function
of the interchain interaction J2 for J1 = 1.

Fig. 4. Spin reductions in the ground state as a function of
the interchain interaction J2.

the acoustic gap and optical gap show a linear relation
with the interaction between the two ferrimagnetic chains
when the interaction J2 is larger than 0.4, but a quadratic
relation in the weak interaction case. These conclusions
are in agreement with the results of the DMRG [9], which
further ensures us that the SBMFT is effective for this
mixed spin system.

Due to the interchain interaction, the ground state of
the double-chain becomes the singlet state in the gapful
phase. From the above Bogliubov transformation between
equations (6) and (7), we can obtain 〈SA1

2i,z〉 = −〈SA2
2i,z〉

and 〈SB1
2i+1,z〉 = −〈SB2

2i+1,z〉, which result in an antiferro-
magnetic ground state with the z-directional total spin in
the unit cell Stot = 〈SA1

2i,z +SB1
2i+1,z +SA2

2i,z +SB2
2i+1,z〉 = 0 as

presented by Trumper and Gazza in reference [9]. Accord-
ing to the above definitions in equation (16), the four spin
reductions on the double-chain are also symmetric (i.e.,
τA1 = τA2 and τB1 = τB2). Figure 4 shows the two spin
reductions about τA1 and τB1 as function of the interac-
tion J2, which are denoted by the filled circle and triangu-
lar curve, respectively. The two equal spin reductions at
J2 = 0 decrease quickly with increasing J2 in the range
of 0 ≤ J2 < 0.18, which is the transition of the double-
chain from the ferrimagnetic phase to the gapful phase.
The above self-consistent equations (11–15) have no real
number solutions for 0 < J2 < 0.18, so our mean-field

Fig. 5. Temperature-dependent SRO parameters (A, C, and
D) for the interaction couplings J1 = J2 = 1.

approach is not good enough to describe this phase tran-
sition in weak-coupling regimes, as shown by the dotted
curve in Figure 4. When the interaction J2 is above 0.18,
the two spin reductions become separated, and increase
to different degrees with the increase of J2. The spin re-
duction of τB1 increases more quickly than τA1 due to the
larger spin magnitude on the B sublattice. In the mean
time, the long-range staggered ferrimagnetic order in one
leg of the two-leg ladder system is not completely de-
stroyed. τB1 − τA1 = 1/2 − 〈SA1

2i,z + SB1
2i+1,z〉 reflects the

disorder of the system, which is shown by the square curve
in Figure 4. With the increase of the interchain interac-
tion J2, the ground state of the ferrimagnetic double-chain
becomes more disordered. The enlargement of the gap and
disorder in the ground state with the increase of the in-
teraction J2 means an increase of the antiferromagnetic
correlation, which will be discussed below.

3.2 Properties at low temperatures

Now, we move to the thermodynamic properties at fi-
nite temperatures for the special case of J1 = J2 =
1. Four kinds of sublattice spin correlations in the z-
direction (i.e., 〈SA1

2i,zS
A2
2i,z〉, 〈SB1

2i+1,zS
B2
2i+1,z〉, 〈SA1

2i,zS
B1
2i+1,z〉

and 〈SA1
2i,zS

B2
2i+1,z〉) are calculated at low temperatures,

which are shown in Figure 5. In the antiferromagnetic
ground state (T = 0K), the first three kinds are neg-
ative, which shows that the two nearest-neighbor sub-
lattice spins are staggered with respect to each other in
the z-direction, and the positive 〈SA1

2i,zS
B2
2i+1,z〉 shows the

spins on the sublattices of (A1 − B2) are parallel in the
z-direction. These conclusions are in agreement with the
above antiferromagnetic configuration in the ground state.
Meanwhile, Figure 5 clearly illustrates that all four kinds
of short-range correlations are decreased by thermal fluc-
tuations, demonstrating that the short-range order will
decrease with an increase in the temperature.

From equation (5), we know the strengths of the
above three short-range correlations (i.e., 〈SA1

2i,zS
A2
2i,z〉,

〈SB1
2i+1,zS

B2
2i+1,z〉, and 〈SA1

2i,zS
B1
2i+1,z〉) can be represented
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Fig. 6. Four short-range spin correlations of 〈SA1
2i,zSA2

2i,z〉,
〈SB1

2i+1,zSB2
2i+1,z〉, 〈SA1

2i,zSB1
2i+1,z〉 and 〈SA1

2i,zSB2
2i+1,z〉 versus tem-

perature T .

by three SRO parameters (C, A, and D), respectively.
Figure 6 shows the calculated results for the three SRO
parameters (C, A, and D) at low temperatures. With an
increase in the temperature, all three SRO parameters de-
crease, reflecting that the strengths of the short-range an-
tiferromagnetic correlations in the sublattices of (A1−A2),
(An −Bn) and (B1 −B2) become weaker. Over the whole
temperature range in Figure 6, we can see D > A > C,
which shows that both the magnitude of short-range corre-
lation and the SRO parameter depend on the magnitude
of the corresponding sublattice spins, as pointed out in
reference [9]. Consequently, the SRO parameter C is the
smallest one among them, and becomes zero first when the
temperature approaches the cross-temperature Tc. Here
the cross-temperature Tc in this two-leg ladder system
cannot be expressed by a simple formula, and we only
have the numerical value of Tc � 1.376. The existence of
the above SRO parameters and corresponding short-range
correlations below Tc are the foundation of the SBMFT.
Once the temperature is above Tc, the above SRO breaks
down, resulting in the failure of the SBMFT, as already
pointed out in references [14,15].

The temperature-dependent energy gaps have been
plotted in Figure 7. With the increase in the temperature,
the two gaps vary in different ways: the acoustic gap be-
comes bigger, while the optical gap becomes smaller. This
is a universal phenomenon in the mixed-spin system re-
gardless of the dimension of the system. This phenomenon
has also been observed in both the one-dimensional mixed-
spin system [14] and the two-dimensional mixed-spin
system [15].

The specific heat CV can be obtained by the numerical
differentiation of the internal energy with respect to T .
From the Bogliubov transformation, we can also obtain
the per unit cell magnetic susceptibility χ under zero mag-
netic field at a finite temperature:

χ =
1

kBT

ξ=↑,↓∑

n=1,2

[〈
α

(n)+
k,ξ α

(n)
k,ξ

〉 (〈
α

(n)+
k,ξ α

(n)
k,ξ

〉
+ 1

)

+
〈
β

(n)+
k,ξ β

(n)
k,ξ

〉 (〈
β

(n)+
k,ξ β

(n)
k,ξ

〉
+ 1

)]
.

Fig. 7. Temperature-dependent energy gaps of ∆− and ∆+

for the special case where J1 = J2 = 1.

Fig. 8. The per unit cell specific heat CV (a) and the product
of the magnetic susceptibility and temperature χT (b) ver-
sus T . The experimental results of NiCu(pba)(D2O)3 ·D2O in
reference [17] have been plotted as filled squares in (b) with
the temperature in K and χT in emu K/mol.

Here we use the reduced temperature (i.e., kB = 1). In
such a gapful system, both the specific heat CV and the
product of magnetic susceptibility and temperature χT
show an exponential relation with temperature T , as
shown in Figures 8a and b, respectively. These are the
basic features in the gapful phase. It should be noted that
the steep decrease of χT had been observed in the exper-
iments on NiCu(pba)(D2O)3 · D2O below T = 7 K [17],
which is caused by interchain antiferromagnetic couplings.
For a direct comparison with the experiment results, we
have also plotted the experimental results in Figure 8b
as filled squares. Our theoretical results, solid line in Fig-
ure 8b, can explain qualitatively the exponential tempera-
ture behavior of χT as the temperature goes down to zero.
The small divergence with the temperature above T = 7 K
is due to the weakness or even disappearance of the inter-
chain interaction, while the temperature-dependent inter-
chain interaction has not been taken into account in our
theoretical calculations.
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4 Conclusions

In summary, the thermodynamic properties in the system
of a quantum ferrimagnetic double-chain have been inves-
tigated in detail, and are affected by two main factors of
interchain coupling J2 and temperature T . In one special
case where J2 = 0, we compare our results with the ear-
lier conclusions in reference [14], which provide a good
physical picture. In another special case where J2 = 1,
the reasonable result for the gap ∆− = 0.11 is good
enough to recall the generalization suggested by Haldane
concerning the antiferromagnetic coupling system in fer-
rimagnetic systems, though it is smaller than that of 0.33
from the DMRG. The interchain interaction of J2 can
send the quantum mixed-spin system into a gapful phase.
Our results support the suggestion by Trumper and Gazza
in reference [9] that for a ferrimagnetic multi-chain, any
odd number of chains always has a ferrimagnetic gapless
ground state which is ordered, any even number of chains
has a spin gap behavior analogous to the uniform spin-
1/2 case.

Furthermore, this paper provides a good evidence for
the theoretical spin gap caused by the interchain inter-
action in the ferrimagnetic ladder. Thermodynamic ob-
servables of CV and χT are calculated, which take on the
typical characteristics found in the Haldane gap systems,
i.e., the exponential temperature-dependent behavior. Es-
pecially, the theoretically temperature-dependent χT ex-
plains well the experimental results on NiCu(pba)(D2O)3 ·
D2O below T = 7 K [17]. The ground-state energy gap and
the band gap are also discussed, which may have some spe-
cial effects on its magnetization plateau curve at T = 0 K.
However, these are beyond the scope of this paper and will
be considered in the future.
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